Math 55 Quiz 3 DIS 106

Name: _____

14 Feb 2022

- 1. Prove or disprove each of the following statements:
 - (a) The function $f: \mathbb{Q} \to \mathbb{Q}$ defined by $f(x) = x^2$ is onto. [3 points]
 - (b) If f is an injective function from A to B, and S is a subset of A, then $f^{-1}(f(S)) = S$. [4 points]
 - (c) Suppose a, b, c, d are positive integers. If $a \equiv b \pmod{2}$ and $c \equiv d \pmod{14}$, then $ab \equiv cd \pmod{28}$. [3 points]
 - (a) This is false. We claim that -1 is not mapped to by any element of \mathbb{Q} : Suppose otherwise, then $f(x) = x^2 = -1$ for some $x \in \mathbb{Q}$. But then $-1 = x^2 \ge 0$; contradiction.
 - (b) This is true.

For any $x \in f^{-1}(f(S))$, $f(x) \in f(S)$, hence there exists $x' \in S$ such that f(x) = f(x'). Since f is injective, x = x'. This implies that $x = x' \in S$. So $f^{-1}(f(S)) \subseteq S$ Conversely, for any $x \in S$, $f(x) \in f(S)$, hence $x \in f^{-1}(f(S))$. So $S \subseteq f^{-1}(f(S))$. Hence $f^{-1}(f(S)) = S$.

(c) This is false. For example, take a = 1, b = 1, c = 1, d = 15, then $a \equiv b \pmod{2}$ and $c \equiv d \pmod{14}$ but $ab = 1 \not\equiv cd = 15 \pmod{28}$.