# Math 55 Quiz 3 DIS 106 

Name: $\qquad$ 14 Feb 2022

1. Prove or disprove each of the following statements:
(a) The function $f: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $f(x)=x^{2}$ is onto. [3 points]
(b) If $f$ is an injective function from $A$ to $B$, and $S$ is a subset of $A$, then $f^{-1}(f(S))=S$. [4 points]
(c) Suppose $a, b, c, d$ are positive integers. If $a \equiv b(\bmod 2)$ and $c \equiv d(\bmod 14)$, then $a b \equiv c d(\bmod 28) .[3$ points]
(a) This is false. We claim that -1 is not mapped to by any element of $\mathbb{Q}$ :

Suppose otherwise, then $f(x)=x^{2}=-1$ for some $x \in \mathbb{Q}$. But then $-1=x^{2} \geq 0$; contradiction.
(b) This is true.

For any $x \in f^{-1}(f(S)), f(x) \in f(S)$, hence there exists $x^{\prime} \in S$ such that $f(x)=f\left(x^{\prime}\right)$. Since $f$ is injective, $x=x^{\prime}$. This implies that $x=x^{\prime} \in S$. So $f^{-1}(f(S)) \subseteq S$
Conversely, for any $x \in S, f(x) \in f(S)$, hence $x \in f^{-1}(f(S))$. So $S \subseteq f^{-1}(f(S))$.
Hence $f^{-1}(f(S))=S$.
(c) This is false. For example, take $a=1, b=1, c=1, d=15$, then $a \equiv b(\bmod 2)$ and $c \equiv d(\bmod 14)$ but $a b=1 \not \equiv c d=15(\bmod 28)$.

